## SWE 637 Software Testing Chapter 8.3

## Applying Logic Coverage In-class exercise <br> Dr. Brittany Johnson-Matthews <br> (Dr. B for short)

https://go.gmu.edu/SWE637
Adapted from slides by Jeff Offutt and Bob Kurtz

## Exercise $8.3 \# 12$

```
ublic final class GoodFastCheap {
    boolean good = false
    boolean fast = false;
boolean cheap = false;
public void makeGood () {
    good = true;
        if (fast && cheap) cheap = false;
}
public void makeFast () {
    fast = true
    if (good && cheap) good = false;
}
public void makeCheap () {
    cheap = true;
    if (good && fast) fast = false;
}
public void makeBad () { good = false }
public void makeExpensive () { cheap = false; }
public boolean isSatisfactory () {
    if ((good && fast) || (good && cheap) || (fast && cheap))
```

$\qquad$
this predicate

```
Good, fast, and cheap: pick any two out of three! return false;
}
public boolean isSatisfactoryRefactored () {
    if (good && fast) return true;
    if (good && cheap) return true;
    if (fast && cheap) return true;
    return false;
}}
```


## isSatisfactory Predicate

```
public boolean isSatisfactory () {
    if ((good && fast) || (good && cheap) || (fast && cheap))
        return true;
    return false;
}
```

Simplify the predicate:
$P=$

## isSatisfactory Predicate

```
public boolean isSatisfactory () {
    if ((good && fast) || (good && cheap) || (fast && cheap))
        return true;
    return false;
}
```

Simplify the predicate:
$p=g \wedge f \vee g \wedge c \vee f \wedge c$

RACC Tests for issatisfactory

$$
p=g \wedge f v g \wedge c \vee f \wedge C
$$

| $\#$ | $g$ | $f$ | $c$ | $p$ | $p_{0}$ | $p_{i}$ | $p_{c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | T | T | T |  |  |  |  |
| 2 | T | T | F |  |  |  |  |
| 3 | T | F | T |  |  |  |  |
| 4 | T | F | F |  |  |  |  |
| 5 | F | T | T |  |  |  |  |
| 6 | F | T | F |  |  |  |  |
| 7 | F | F | T |  |  |  |  |
| 8 | F | F | F |  |  |  |  |

Complete the truth table for $p$

RACC Tests for issatisfactory

$$
p=g \wedge f v g \wedge c \vee f \wedge C
$$

| $\#$ | $g$ | $f$ | $c$ | $p$ | $p_{g}$ | $p_{i}$ | $p_{c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | T | T | T | T |  |  |  |
| 2 | T | T | F | T |  |  |  |
| 3 | T | F | T | T |  |  |  |
| 4 | T | F | F | F |  |  |  |
| 5 | F | T | T | T |  |  |  |
| 6 | F | T | F | F |  |  |  |
| 7 | F | F | T | F |  |  |  |
| 8 | F | F | F | F |  |  |  |

Complete the truth table for $p$

RACC Tests for isSatisfactory

$$
p=g \wedge f v g \wedge c \vee f \wedge C
$$

| $\#$ | $g$ | $f$ | $c$ | $p$ | $p_{g}$ | $p_{i}$ | $p_{c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | T | T | T | T |  |  |  |
| 2 | T | T | F | T |  |  |  |
| 3 | T | F | T | T |  |  |  |
| 4 | T | F | F | F |  |  |  |
| 5 | F | T | T | T |  |  |  |
| 6 | F | T | F | F |  |  |  |
| 7 | F | F | T | F |  |  |  |
| 8 | F | F | F | F |  |  |  |

Determine conditions under which $g$ determines $p$

$$
\begin{aligned}
& P_{g}=P_{g=t r u e} \oplus P_{g}=\text { false } \\
& =
\end{aligned}
$$

RACC Tests for is Satisfactory

$$
p=g \wedge f V g \wedge C V f \wedge C
$$

| $\#$ | $g$ | $f$ | c | p | $p_{0}$ | $p_{i}$ | $p_{e}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | T | T | T | T |  |  |  |
| 2 | T | T | F | T | 1 |  |  |
| 3 | T | F | T | T | 2 |  |  |
| 4 | T | F | F | F |  |  |  |
| 5 | F | T | T | T |  |  |  |
| 6 | F | T | F | F | 1 |  |  |
| 7 | F | F | T | F | 2 |  |  |
| 8 | F | F | F | F |  |  |  |
|  |  |  |  |  |  |  |  |

Determine conditions under which $g$ determines $p$

$$
\begin{aligned}
& P_{g}=P_{g=t r u e} \bigoplus P g=f a l s e \\
& =T \wedge f \vee T \wedge c \vee f \wedge c \oplus F \wedge f \vee F \wedge c \vee f \wedge c \\
& =f \vee c \vee f \wedge c \oplus f \wedge c \\
& =f \vee c \oplus f \wedge c \\
& =f \wedge \neg c \vee \neg f \wedge c
\end{aligned}
$$

RACC Tests for is Satisfactory

$$
p=g \wedge f V g \wedge C V f \wedge C
$$

| $\#$ | $g$ | $f$ | c | $p$ | $p_{c}$ | $p_{i}$ | $p_{c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | T | T | T | T |  |  |  |
| 2 | T | T | F | T | 1 |  |  |
| 3 | T | F | T | T | 2 |  |  |
| 4 | T | F | F | F |  |  |  |
| 5 | F | T | T | T |  |  |  |
| 6 | F | T | F | F | 1 |  |  |
| 7 | F | F | T | F | 2 |  |  |
| 8 | F | F | F | F |  |  |  |

Determine conditions under which $f$ determines $p$
$P_{f}=P_{f=t r u e} \oplus P_{f=f a l s e}$ $=$

RACC Tests for is Satisfactory

$$
p=g \wedge f V g \wedge C V f \wedge C
$$

| $\#$ | $g$ | $f$ | c | $p$ | $p_{6}$ | $p_{i}$ | $p_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | T | T | T | T |  |  |  |
| 2 | T | T | F | T | 1 | 3 |  |
| 3 | T | F | T | T | 2 |  |  |
| 4 | T | F | F | F |  | 3 |  |
| 5 | F | T | T | T |  | 4 |  |
| 6 | F | T | F | F | 1 |  |  |
| 7 | F | F | T | F | 2 | 4 |  |
| 8 | F | F | F | F |  |  |  |

Determine conditions under which $f$ determines $p$
$P_{f}=P_{f=\text { true }} \oplus P_{f=f a l s e}$ $=g \wedge T V g \wedge c V T \wedge c \oplus g \wedge F V g \wedge C V F \wedge c$
$=g V g \wedge c V c \oplus g \wedge c$
$=g \vee c \oplus g \wedge c$

$$
=g \wedge \neg c \vee \neg g \wedge c
$$

RACC Tests for isSatisfactory

$$
p=g \wedge f V g \wedge C V f \wedge C
$$

| $\#$ | $g$ | $f$ | $c$ | $p$ | $p_{c}$ | $p_{i}$ | $p_{c}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | T | T | T | T |  |  |  |
| 2 | T | T | F | T | 1 | 3 |  |
| 3 | T | F | T | T | 2 |  |  |
| 4 | T | F | F | F |  | 3 |  |
| 5 | F | T | T | T |  | 4 |  |
| 6 | F | T | F | F | 1 |  |  |
| 7 | F | F | T | F | 2 | 4 |  |
| 8 | F | F | F | F |  |  |  |

Determine conditions under which c determines $p$

$$
\begin{aligned}
& P_{c}=P_{c=\text { true }} \bigoplus P_{c=\text { false }} \\
& =
\end{aligned}
$$

## RACC Tests for isSatisfactory

$$
p=g \wedge f v g \wedge c \vee f \wedge C
$$

| $\#$ | $g$ | $f$ | $c$ | $p$ | $p_{g}$ | $p_{i}$ | $p_{c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | T | T | T | T |  |  |  |
| 2 | T | T | F | T | 1 | 3 |  |
| 3 | T | F | T | T | 2 |  | 5 |
| 4 | T | F | F | F |  | 3 | 5 |
| 5 | F | T | T | T |  | 4 | 6 |
| 6 | F | T | F | F | 1 |  | 6 |
| 7 | F | F | T | F | 2 | 4 |  |
| 8 | F | F | F | F |  |  |  |

Determine conditions under which $c$ determines $p$

$$
\begin{aligned}
& P_{c}=P_{c=t r u e} \bigoplus P_{c}=f a l s e \\
& =g \wedge f \vee g \wedge T \vee f \wedge T \bigoplus g \wedge f \vee g \wedge F \vee f \wedge F \\
& =g \wedge f \vee g \vee f \bigoplus g \wedge f \\
& =g \vee f \bigoplus g \wedge f \\
& =g \wedge \neg f \vee \neg g \wedge f
\end{aligned}
$$

## RACC Tests for isSatisfactory

Develop a set of JUnit tests for method isSatisfactory() that satisfies the RACC criterion

Restricted Active Clause Coverage (RACC) - For each $p$ in $P$ and each major clause $\boldsymbol{C}_{i}$ in $C_{p}$, choose minor clauses $\boldsymbol{c}_{j}$ (j!=i) such that $c_{i}$ determines $p$. TR has two requirements for $c_{i}: c_{i}$ evaluates to true and $c_{i}$ evaluates to false. The values chosen for minor clauses $c_{j}$ must be the same when $c_{i}$ is true as when $c_{i}$ is false.

RACC Tests for isSatisfactory

| $\#$ | $g$ | $f$ | $c$ | $p$ | $p_{g}$ | $p_{i}$ | $p_{c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | T | T | T | T |  |  |  |
| 2 | T | T | F | T | 1 | 3 |  |
| 3 | T | F | T | T | 2 |  | 5 |
| 4 | T | F | F | F |  | 3 | 5 |
| 5 | F | T | T | T |  | 4 | 6 |
| 6 | F | T | F | F | 1 |  | 6 |
| 7 | F | F | T | F | 2 | 4 |  |
| 8 | F | F | F | F |  |  |  |

Determine RACC tests for $g$, $f$, and $c$

For g: $(2,6)$ or $(3,7)$

RACC Tests for isSatisfactory
Determine RACC tests for $g$, $f$, and $c$

For g: $(2,6)$ or $(3,7)$
For $f$ :

RACC Tests for isSatisfactory
Determine RACC tests for $g$, $f$, and $c$

For g: $(2,6)$ or $(3,7)$
For $f:(2,4)$ or $(5,7)$
For c :

RACC Tests for isSatisfactory
Determine RACC tests for $g$, $f$,

| $\#$ | $g$ | $f$ | $c$ | $p$ | $p_{0}$ | $p_{i}$ | $p_{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | T | T | T | T |  |  |  |
| 2 | T | T | F | T | 1 | 3 |  |
| 3 | T | F | T | T | 2 |  | 5 |
| 4 | T | F | F | F |  | 3 | 5 |
| 5 | F | T | T | T |  | 4 | 6 |
| 6 | F | T | F | F | 1 |  | 6 |
| 7 | F | F | T | F | 2 | 4 |  |
| 8 | F | F | F | F |  |  |  | and $c$

For g: $(2,6)$ or $(3,7)$
For $f:(2,4)$ or $(5,7)$
For $\mathrm{c}:(3,4)$ or $(5,6)$

Minimalcombinations:

There are various minimal
$\{2,3,4,6\},\{2,4,5,6\},\{2,5,6,7\}$, combinations of tests, but we'll $\{2,3,4,7\},\{3,4,5,7\},\{3,5,6,7\}$

## RACC Tests for isSatisfactory

| $\#$ | $g$ | $f$ | $c$ | $p$ | $p_{0}$ | $p_{i}$ | $p_{c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | T | T | T | T |  |  |  |
| 2 | T | T | F | T | 1 | 3 |  |
| 3 | T | F | T | T | 2 |  | 5 |
| 4 | T | F | F | F |  | 3 | 5 |
| 5 | F | T | T | T |  | 4 | 6 |
| 6 | F | T | F | F | 1 |  | 6 |
| 7 | F | F | T | F | 2 | 4 |  |
| 8 | F | F | F | F |  |  |  |

RACCtests: $2,3,4,6$
\{TTF, TFT, TFF, FTF \}

```
GoodFastCheap gfc;
    @Before public void setUp() {
    gfc = new GoodFastCheap(); // 8: FFF
}
@Test public void test2() throws Exception {
    gfc.makeGood(); // 4:TFF
    gfc.makeFast(); // 2:TTF
    assertTrue(gfc.isSatisfactory());
}
@Test public void test3() throws Exception {
    gfc.makeGood(); // 4:TFF
    gfc.makeCheap(); // 3:TFT
    assertTrue(gfc.isSatisfactory());
}
@Test public void test4() throws Exception {
    gfc.makeGood(); // 4:TFF
    assertFalse(gfc.isSatisfactory());
}
@Test public void test6() throws Exception {
    gfc.makeFast(); // 6: FT F
    assertFalse(gfc.isSatisfactory());
}
```

END OF EXERCISE

## Exercise 8.3 \#12

```
public final class GoodFastCheap {
    boolean good = false
    boolean fast = false;
boolean cheap = false;
public void makeGood () {
    good = true;
        if (fast && cheap) cheap = false;
}
public void makeFast () {
    fast = true;
    if (good && cheap) good = false;
}
public void makeCheap () {
    heap = true;
    if (good && fast) fast = false;
}
public void makeBad () { good = false }
public void makeExpensive () { cheap = false; }
public boolean isSatisfactory () {
    if ((good && fast) || (good && cheap) || (fast && cheap))
        return true;
        return false;
}
public boolean isSatisfactoryRefactored () {
    if (good && fast) return true;
    if (good && cheap) return true;
    if (fast && cheap) return true;
    return false;
```



```
}
```

> Good, fast, and cheap: pick any two out of three!

## IsSatisfactoryRefactored Predicate

```
public boolean isSatisfactory () {
    if ((good && fast) || (good && cheap) || (fast && cheap))
        return true;
    return false;
}
```

Simplify the predicates:
$P_{1}=$
$P_{2}=$
$P_{3}=$

## IsSatisfactoryRefactored Predicate

```
public boolean isSatisfactory () {
    if ((good && fast) || (good && cheap) || (fast && cheap))
        return true;
    return false;
}
```

Simplify the predicates:
$P_{1}=g \wedge f$
$P_{2}=g \wedge c$
$P_{3}=f \wedge c$

RACC for IsSatisfactoryRefactored
Compute $p$ and determine when $g$ and $f$ determine $p_{1}$

| $\mathrm{p}_{1}=$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \# | g | f | P | $\mathrm{p}_{\mathrm{s}}$ | $\mathrm{p}_{\mathrm{i}}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  |


| $\mathrm{p}_{2}=$ |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| \# | g | c | p | $\mathrm{p}_{\mathrm{s}}$ | $\mathrm{p}_{\mathrm{c}}$ |
| 5 | T | T |  |  |  |
| 6 | T | F |  |  |  |
| 7 | F | T |  |  |  |
| 8 | F | F |  |  |  |


| $\mathrm{p}_{\mathrm{s}}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | f | c | p | $\mathrm{p}_{\mathrm{i}}$ | $\mathrm{p}_{\mathrm{e}}$ |
| 9 | T | T |  |  |  |
| 10 | T | F |  |  |  |
| 11 | F | T |  |  |  |
| 12 | F | F |  |  |  |

## RACC for IsSatisfactoryRefactored

Compute RACC test
pairs for $g$ and $f$
TRs for $g$ :
TRs for $f$ :

| $p_{1}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | g | f | P | $\mathrm{p}_{9}$ | $\mathrm{p}_{\mathrm{f}}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  |


|  | $p_{2}=$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ | g | c | p | $\mathrm{p}_{\mathrm{s}}$ | $\mathrm{p}_{\mathrm{c}}$ |
| 5 | T | T |  |  |  |
| 6 | T | F |  |  |  |
| 7 | F | T |  |  |  |
| 8 | F | F |  |  |  |


|  | $p_{3}=$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | f | c | p | $p_{\mathrm{f}}$ | $p_{\mathrm{c}}$ |
| 9 | T | T |  |  |  |
| 10 | T | F |  |  |  |
| 11 | F | T |  |  |  |
| 12 | F | F |  |  |  |

## RACC for IsSatisfactoryRefactored

Compute RACC test
pairs for $g$ and $f$

TRs for $g$ : $(1,3)$
TRs for $f$ : $(1,2)$

| $p_{1}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | g | f | P | $\mathrm{p}_{\mathrm{s}}$ | $\mathrm{p}_{\mathrm{i}}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  |


| $\mathrm{p}_{2}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ | g | c | p | $\mathrm{p}_{\mathrm{s}}$ | $\mathrm{p}_{\mathrm{c}}$ |
| 5 | T | T |  |  |  |
| 6 | T | F |  |  |  |
| 7 | F | T |  |  |  |
| 8 | F | F |  |  |  |


| $p_{3}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ | f | C | p | $\mathrm{p}_{\mathrm{i}}$ | $\mathrm{p}_{\mathrm{c}}$ |
| 9 | T | T |  |  |  |
| 10 | T | F |  |  |  |
| 11 | F | T |  |  |  |
| 12 | F | F |  |  |  |

RACC for IsSatisfactoryRefactored
Compute $p$ and determine when $g$ and $c$ determine $p_{2}$

TRs for $g$ : $(1,3)$
TRs for $f:(1,2)$

| $\mathrm{p}_{1}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | g | f | P | $\mathrm{p}_{\mathrm{s}}$ | $\mathrm{p}_{\mathrm{r}}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  |


| $\mathrm{p}_{2}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | g | c | p | $\mathrm{p}_{s}$ | $\mathrm{p}_{\imath}$ |
| 5 | T | T | T | $\checkmark$ | $\checkmark$ |
| 6 | T | F | F |  | $\checkmark$ |
| 7 | F | T | F | $\checkmark$ |  |
| 8 | F | F | F |  |  |


|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | f | c | p | $p_{i}$ | $p_{c}$ |
| 9 | T | T |  |  |  |
| 10 | T | F |  |  |  |
| 11 | F | T |  |  |  |
| 12 | F | F |  |  |  |

## RACC for IsSatisfactoryRefactored

Compute $p$ and determine when $g$ and $c$ determine $p_{2}$

TRs for $g$ : $(1,3)$
TRs for $f:(1,2)$

Compute RACC test pairs for $g$ and $c$ TRs for $g$ :
TRs for $c$ :

| $p_{1}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | g | f | P | $p_{9}$ | $p_{i}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  |


|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | g | p | $p_{9}$ | $p_{c}$ |  |
| 5 | T |  | T | $\checkmark$ | $\checkmark$ |
| 6 | T |  | F |  | $\checkmark$ |
| 7 | F |  | F | $\checkmark$ |  |
| 8 | F |  | F |  |  |


| $p_{3}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | f | c | p | $\mathrm{p}_{\mathrm{i}}$ | $\mathrm{p}_{\mathrm{o}}$ |
| 9 | T | T |  |  |  |
| 10 | T | F |  |  |  |
| 11 | F | T |  |  |  |
| 12 | F | F |  |  |  |

## RACC for IsSatisfactoryRefactored

Compute $p$ and determine when $g$ and $c$ determine $p_{2}$

TRs for $g$ : $(1,3)$
TRs for $f:(1,2)$

Compute RACC test pairs for $g$ and $c$
TRs for $g$ : $(5,7)$
TRs for $c:(5,6)$

| $p_{1}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | g | f | P | $p_{9}$ | $p_{i}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  |


|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | g | p | $p_{s}$ | $p_{c}$ |  |
| 5 | T |  | T | $\checkmark$ | $\checkmark$ |
| 6 | T |  | F |  | $\checkmark$ |
| 7 | F |  | F | $\checkmark$ |  |
| 8 | F |  | F |  |  |


|  | $\mathrm{p}_{3}=$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | f | c | p | $\mathrm{p}_{\mathrm{f}}$ | $\mathrm{p}_{\mathrm{c}}$ |
| 9 | T | T |  |  |  |
| 10 | T | F |  |  |  |
| 11 | F | T |  |  |  |
| 12 | F | F |  |  |  |

## RACC for IsSatisfactoryRefactored

Compute $p$ and determine when $g$ and $f$ determine $p_{3}$

TRs for $g$ : $(1,3)$
TRs for $f:(1,2)$

| $p_{1}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | g | f | P | $\mathrm{p}_{\mathrm{g}}$ | $\mathrm{p}_{\mathrm{i}}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  |

TRs for $g$ : $(5,7)$
TRs for $c:(5,6)$

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \# | g | p | $p_{9}$ | $p_{c}$ |  |
| 5 | T |  | T | $\checkmark$ | $\checkmark$ |
| 6 | T |  | F |  | $\checkmark$ |
| 7 | F | F | $\checkmark$ |  |  |
| 8 | F | F |  |  |  |


| $p_{3}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | f | C | p | $p_{\mathrm{i}}$ | $p_{c}$ |
| 9 | T | T | T | $\checkmark$ | $\checkmark$ |
| 10 | T | F | F |  | $\checkmark$ |
| 11 | F | T | F | $\checkmark$ |  |
| 12 | F | F | F |  |  |

## RACC for IsSatisfactoryRefactored

Compute $p$ and determine when $g$ and $f$ determine $p_{3}$

| TRs for $g$ : $(1,3)$ TRs for $f:(1,2)$ |  |  |  |  |  | TRs for $g$ : $(5,7)$ <br> TRs for $c:(5,6)$ |  |  |  |  | Compute RACC test pairs for $f$ and $c$ TRs for $f$ : TRs for $c$ : |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{p}_{1}=$ |  |  |  |  |  |  |  |  |  |  | $\mathrm{p}_{\mathrm{s}}=$ |  |  |  |  |  |
| \# | g | f | P | $p_{8}$ | $p_{t}$ | \# | g | p | $p_{9}$ | $p^{\text {c }}$ | \# | f | c | p | p | $\mathrm{p}^{\text {s }}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ | 5 | T | T | $\checkmark$ | $\checkmark$ | 9 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ | 6 | T | F |  | $\checkmark$ | 10 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  | 7 | F | F | $\checkmark$ |  | 11 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  | 8 | F | F |  |  | 12 | F | F | F |  |  |

## RACC for IsSatisfactoryRefactored

Compute $p$ and determine when $g$ and $f$ determine $p_{3}$

| TRs for $g$ : $(1,3)$ TRs for $f:(1,2)$ |  |  |  |  |  | TRs for $g$ : $(5,7)$ <br> TRs for $c:(5,6)$ |  |  |  |  | Compute RACC test pairs for $f$ and $c$ TRs for $f:(9,11)$ TRs for $c:(9,10)$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{p}_{1}=$ |  |  |  |  |  |  |  |  |  |  | $\mathrm{p}_{\mathrm{s}}=$ |  |  |  |  |  |
| \# | g | f | P | $p_{8}$ | $p_{t}$ | \# | g | p | $p_{9}$ | $p^{\text {c }}$ | \# | f | c | p | p | $\mathrm{p}^{\text {s }}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ | 5 | T | T | $\checkmark$ | $\checkmark$ | 9 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ | 6 | T | F |  | $\checkmark$ | 10 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  | 7 | F | F | $\checkmark$ |  | 11 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  | 8 | F | F |  |  | 12 | F | F | F |  |  |

## RACC for IsSatisfactoryRefactored

Note that to

TRs for $g:(1,3)$ and $(5,7)$
TRs for $f:(1,2)$ and $(9,11)$
TRs for $c:(5,6)$ and $(9,10)$

For $f \wedge c$ :
reach $g \wedge c, g \wedge f m$ ust be false. To reach $f \wedge c, g \wedge c a n$ dg^fmust be false. That suggests we should work from the bottom up!

| $p_{1}=$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \# | g | f | P | $\mathrm{p}_{s}$ | $\mathrm{p}_{1}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  |


|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| \# | g |  | p | $p_{s}$ |
|  | $p_{c}$ |  |  |  |
| 5 | T | T | $\checkmark$ | $\checkmark$ |
| 6 | T | F |  | $\checkmark$ |
| 7 | F | F | $\checkmark$ |  |
| 8 | F |  | F |  |


| $p_{s}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | f | c | p | $p_{i}$ | $p_{c}$ |
| 9 | T | T | T | $\checkmark$ | $\checkmark$ |
| 10 | T | F | F |  | $\checkmark$ |
| 11 | F | T | F | $\checkmark$ |  |
| 12 | F | F | F |  |  |

## RACC for IsSatisfactoryRefactored

Note that to
For $f \wedge c:$ tests $9,10,11$

$$
\{* T T, * T F, * F T\}
$$

Which solutions are controllable and reachable?
reach $g \wedge c, g \wedge f m$ ust be false. To reach $f \wedge c, g \wedge c a n$ dg^fmust be false. That suggests we should work from the bottom up!

| $p_{1}=$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \# | g | f | P | $\mathrm{p}_{s}$ | $\mathrm{p}_{1}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  |


|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \# | g |  | p | $p_{s}$ | $p_{\imath}$ |
| 5 | T |  | T | $\checkmark$ | $\checkmark$ |
| 6 | T |  | F |  | $\checkmark$ |
| 7 | F |  | F | $\checkmark$ |  |
| 8 | F |  | F |  |  |


| $\mathrm{p}_{\mathrm{s}}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | f | c | p | $\mathrm{p}_{\mathrm{i}}$ | $\mathrm{p}_{\mathrm{c}}$ |
| 9 | T | T | T | $\checkmark$ | $\checkmark$ |
| 10 | T | F | F |  | $\checkmark$ |
| 11 | F | T | F | $\checkmark$ |  |
| 12 | F | F | F |  |  |

## RACC for IsSatisfactoryRefactored

Note that to
For $f \wedge c:$ tests $9,10,11$

$$
\{* T T, * T F, * F T\}
$$

Which solutions are controllable and reachable? $\{F T T, F T F, F F T\}$

Allotherswon'treach
reach $g \wedge c, g \wedge f m$ ust be false. To reach $f \wedge c, g \wedge c a n$ dg^fmust be false. That suggests we should work from the bottom up!

| $p_{1}=$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \# | g | f | P | $\mathrm{p}_{s}$ | $\mathrm{p}_{1}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  |


|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | g | p | $p_{s}$ | $p_{c}$ |  |
| 5 | T |  | T | $\checkmark$ | $\checkmark$ |
| 6 | T |  | F |  | $\checkmark$ |
| 7 | F |  | F | $\checkmark$ |  |
| 8 | F |  | F |  |  |


| $p_{3}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ | f | C | p | $\mathrm{p}_{\mathrm{i}}$ | $\mathrm{p}_{\imath}$ |
| 9 | T | T | T | $\checkmark$ | $\checkmark$ |
| 10 | T | F | F |  | $\checkmark$ |
| 11 | F | T | F | $\checkmark$ |  |
| 12 | F | F | F |  |  |

## RACC for IsSatisfactoryRefactored

TRs for $g:(1,3)$ and $(5,7)$
TRs for $f:(1,2)$ and $(9,11)$
TRs for $c:(5,6)$ and $(9,10)$
$f \wedge c:\{F T T, F T F, F F T\}$

For $g \wedge c$ :

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | g | f | P | $\mathrm{p}_{\mathrm{s}}$ | $\mathrm{p}_{1}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  |


|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| \# | g |  | p | $p_{s}$ |
|  | $p_{\imath}$ |  |  |  |
| 5 | T | T | $\checkmark$ | $\checkmark$ |
| 6 | T | F |  | $\checkmark$ |
| 7 | F | F | $\checkmark$ |  |
| 8 | F |  | F |  |


| $\mathrm{p}_{\mathrm{s}}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | f | C | p | $\mathrm{p}_{\mathrm{i}}$ | $\mathrm{p}_{\mathrm{c}}$ |
| 9 | T | T | T | $\checkmark$ | $\checkmark$ |
| 10 | T | F | F |  | $\checkmark$ |
| 11 | F | T | F | $\checkmark$ |  |
| 12 | F | F | F |  |  |

## RACC for IsSatisfactoryRefactored

TRs for $g:(1,3)$ and $(5,7)$ TRs for $f:(1,2)$ and $(9,11)$
TRs for $c:(5,6)$ and $(9,10)$
$f \wedge c:\{F T T, F T F, F F T\}$

> For $g \wedge c:$ tests $5,6,7$ $\left\{T^{*} T, T^{*} F, F^{*} T\right\}$

Which solutions are controllable and reachable?

| $p_{1}=$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \# | g | f | P | $\mathrm{p}_{\mathrm{s}}$ | $\mathrm{p}_{1}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  |


| \# | g | p | $p_{s}$ | $p_{e}$ |
| :---: | :---: | :---: | :---: | :---: |
| 5 | T | T | $\checkmark$ | $\checkmark$ |
| 6 | T | F |  | $\checkmark$ |
| 7 | F | F | $\checkmark$ |  |
| 8 | F |  | F |  |


| $\mathrm{p}_{\mathrm{s}}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | f | C | p | $\mathrm{p}_{\mathrm{i}}$ | $\mathrm{p}_{\mathrm{c}}$ |
| 9 | T | T | T | $\checkmark$ | $\checkmark$ |
| 10 | T | F | F |  | $\checkmark$ |
| 11 | F | T | F | $\checkmark$ |  |
| 12 | F | F | F |  |  |

## RACC for IsSatisfactoryRefactored

TRs for $g$ : $(1,3)$ and $(5,7)$
TRs for $f:(1,2)$ and $(9,11)$
TRs for $c:(5,6)$ and $(9,10)$
$f \wedge c:\{F T T, F T F, F F T\}$

For g^c:tests 5, 6, 7

$$
\left\{T^{*} T, T^{*} F, F^{*} T\right\}
$$

Which solutions are controllable and reachable? \{TFT, TFF, F* $T\}$
All others won't reach $f \wedge c$

| $p_{1}=$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \# | g | $f$ | P | $p_{s}$ | $p_{i}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  |


|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | g |  | p | $p_{s}$ | $p_{c}$ |
| 5 | T |  | T | $\checkmark$ | $\checkmark$ |
| 6 | T |  | F |  | $\checkmark$ |
| 7 | F |  | F | $\checkmark$ |  |
| 8 | F |  | F |  |  |


| $\mathrm{p}_{s}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | f | c | p | $\mathrm{p}_{\mathrm{i}}$ | $\mathrm{p}_{\varepsilon}$ |
| 9 | T | T | T | $\checkmark$ | $\checkmark$ |
| 10 | T | F | F |  | $\checkmark$ |
| 11 | F | T | F | $\checkmark$ |  |
| 12 | F | F | F |  |  |

## RACC for IsSatisfactoryRefactored

TRs for $g:(1,3)$ and $(5,7)$
TRs for $f:(1,2)$ and $(9,11)$
TRs for $c:(5,6)$ and $(9,10)$
$f \wedge c:\{F T T, F T F, F F T\}$ $g \wedge c:\left\{T F T, T F F, F^{*} T\right\}$

For $g \wedge f:$

| $\mathrm{p}_{1}=$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \# | g | f | P | $\mathrm{p}_{\mathrm{s}}$ | $\mathrm{p}_{\mathrm{i}}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  |


| \# | g | P | $p_{s}$ | $p_{e}$ |
| :---: | :---: | :---: | :---: | :---: |
| 5 | T | T | $\checkmark$ | $\checkmark$ |
| 6 | T | F |  | $\checkmark$ |
| 7 | F | F | $\checkmark$ |  |
| 8 | F |  | F |  |


| $\mathrm{p}_{\mathrm{s}}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | f | C | p | $\mathrm{p}_{\mathrm{i}}$ | $\mathrm{p}_{\mathrm{c}}$ |
| 9 | T | T | T | $\checkmark$ | $\checkmark$ |
| 10 | T | F | F |  | $\checkmark$ |
| 11 | F | T | F | $\checkmark$ |  |
| 12 | F | F | F |  |  |

## RACC for IsSatisfactoryRefactored

TRs for $g:(1,3)$ and $(5,7)$ TRs for $f:(1,2)$ and $(9,11)$
TRs for $c:(5,6)$ and $(9,10)$
$f \wedge c:\{F T T, F T F, F F T\}$ g^c: $\left\{T F T, T F F, F^{*} T\right\}$

## For $g \wedge f:$ tests $1,2,3$ $\left\{T T^{*}, T F^{*}, F T^{*}\right\}$

Which solutions are controllable and reachable?

| $\mathrm{p}_{1}=$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \# | g | f | P | $\mathrm{p}_{s}$ | $\mathrm{p}_{1}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  |


|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| \# | g |  | p | $p_{s}$ |
|  | $p_{\imath}$ |  |  |  |
| 5 | T |  | T | $\checkmark$ |
| 6 | T |  | F |  |
| 7 | F |  | F | $\checkmark$ |
| 8 | F |  | F |  |


| $\mathrm{p}_{\mathrm{s}}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | f | c | p | $\mathrm{p}_{i}$ | $\mathrm{p}_{\mathrm{c}}$ |
| 9 | T | T | T | $\checkmark$ | $\checkmark$ |
| 10 | T | F | F |  | $\checkmark$ |
| 11 | F | T | F | $\checkmark$ |  |
| 12 | F | F | F |  |  |

## RACC for IsSatisfactoryRefactored

TRs for $g$ : $(1,3)$ and $(5,7)$
TRs for $f:(1,2)$ and $(9,11)$
TRs for $c:(5,6)$ and $(9,10)$
$f \wedge c:\{F T T, F T F, F F T\}$ g^c: $\left\{T F T, T F F, F^{*} T\right\}$

Which solutions are controllable and reachable?

$$
\left\{T T F, T F^{*}, F T^{*}\right\}
$$

| $p_{1}=$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \# | $g$ | $f$ | P | $p_{s}$ | $p_{1}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  |


|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \# | g |  | p | $p_{s}$ | $p_{c}$ |
| 5 | T |  | T | $\checkmark$ | $\checkmark$ |
| 6 | T |  | F |  | $\checkmark$ |
| 7 | F | F | $\checkmark$ |  |  |
| 8 | F |  | F |  |  |


| $\mathrm{p}_{\mathrm{s}}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | f | c | p | $\mathrm{p}_{i}$ | $\mathrm{p}_{\mathrm{c}}$ |
| 9 | T | T | T | $\checkmark$ | $\checkmark$ |
| 10 | T | F | F |  | $\checkmark$ |
| 11 | F | T | F | $\checkmark$ |  |
| 12 | F | F | F |  |  |

## RACC for IsSatisfactoryRefactored

TRs for $g$ : $(1,3)$ and $(5,7)$
TRs for $f$ : $(1,2)$ and $(9,11)$
TRs for $c:(5,6)$ and $(9,10)$
$f \wedge c:\{F T T, F T F, F F T\}$
$g \wedge c:\left\{T F T, T F F, F^{*} T\right\}$ $g \wedge f:\left\{T T F, T F^{*}, F T^{*}\right\}$

Fillin the *s for a minimal set of test inputs:

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | g | p | $p_{s}$ | $p_{c}$ |  |
| 5 | T |  | T | $\checkmark$ | $\checkmark$ |
| 6 | T |  | F |  | $\checkmark$ |
| 7 | F |  | F | $\checkmark$ |  |
| 8 | F |  | F |  |  |


| $\mathrm{p}_{3}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | f | C | p | $\mathrm{p}_{\mathrm{f}}$ | $\mathrm{p}_{\mathrm{c}}$ |
| 9 | T | T | T | $\checkmark$ | $\checkmark$ |
| 10 | T | F | F |  | $\checkmark$ |
| 11 | F | T | F | $\checkmark$ |  |
| 12 | F | F | F |  |  |

## RACC for IsSatisfactoryRefactored

TRs for $g:(1,3)$ and $(5,7)$
TRs for $f:(1,2)$ and $(9,11)$
TRs for $c:(5,6)$ and $(9,10)$
$f \wedge c:\{F T T, F T F, F F T\}$
$g \wedge c:\left\{T F T, T F F, F^{*} T\right\}$ $g \wedge f:\left\{T T F, T F^{*}, F^{*}\right\}$

Fillin the *s for a minimal set of test inputs:
\{FTT, FTF, FFT, TFT, TFF, TTF \}
compare to issatisfactory:
\{TTF, TFT, TFF, FTF

| $p_{1}=$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \# | $g$ | $f$ | P | $p_{s}$ | $p_{i}$ |
| 1 | T | T | T | $\checkmark$ | $\checkmark$ |
| 2 | T | F | F |  | $\checkmark$ |
| 3 | F | T | F | $\checkmark$ |  |
| 4 | F | F | F |  |  |


| \# | g |  | p | $p_{s}$ | $p_{c}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | T |  | T | $\checkmark$ | $\checkmark$ |
| 6 | T |  | F |  | $\checkmark$ |
| 7 | F |  | F | $\checkmark$ |  |
| 8 | F |  | F |  |  |


| $\mathrm{p}_{\mathrm{s}}=$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | f | C | p | $\mathrm{p}_{\mathrm{i}}$ | $\mathrm{p}_{\mathrm{c}}$ |
| 9 | T | T | T | $\checkmark$ | $\checkmark$ |
| 10 | T | F | F |  | $\checkmark$ |
| 11 | F | T | F | $\checkmark$ |  |
| 12 | F | F | F |  |  |

## RACC Tests for IsSatisfactory

```
GoodFastCheap gfc;
@Before public void setUp() {
    gfc = new GoodFastCheap(); // 8: F F F
}
@Test public void test1() throws Exception {
    gfc.makeGood(); // 4: T F F
    gfc.makeFast(); // 2: T T F
    assertTrue(gfc.isSatisfactory());
}
@Test public void test2() throws Exception {
    gfc.makeGood(); // 4: T F F
    assertFalse(gfc.isSatisfactory());
}
@Test public void test3() throws Exception {
    gfc.makeFast(); // 6: F T F
    assertFalse(gfc.isSatisfactory());
}
@Test public void test4() throws Exception {
    gfc.makeGood();
    gfc.makeGood(); 
    assertTrue(gfc.isSatisfactory());
}
```

```
@Test public void test5() throws Exception
{
    gfc.makeCheap(); // 7: F F T
    assertFalse(gfc.isSatisfactory());
}
@Test public void test6() throws Exception
{
    gfc.makeFast(); // 6: F T F
    gfc.makeCheap(); // 5: F T T
    assertTrue(gfc.isSatisfactory());
}
```

